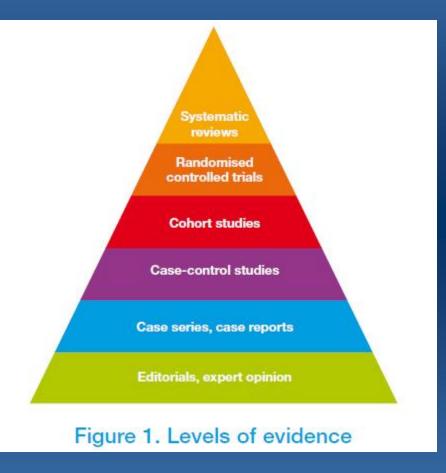
Equipoise, Innovation and the Role for Comparative Studies

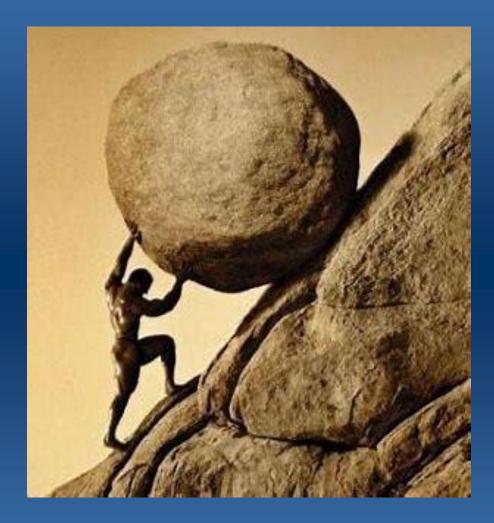
Shawn D. St. Peter, M.D.

Children' s Mercy Hospital Kansas City, MO

NO DISCLOSURES



How Have We Trained Our Surgeons?


How Have We Trained Our Surgeons?

"New therapeutic procedures should be always supported by randomized controlled trials."

A.L. Cochrane, 1989

RANDOMIZED TRIALS CAN NOT BE DONE IN PEDIATRIC SURGERY

□ Parents would never consent

□ Surgeons would never have equipoise

EQUIPOISE

"the condition in which the physician is indifferent to the therapeutic value of an experimental treatment versus a control" Charles Fried

Personal equipoise is "overwhelmingly fragile...disturbed by a slight accretion of evidence" favoring one treatment over another

Benjamin Freedman

CLINICAL EQUIPOISE

Justification to support 2 treatment paths
No proof of superiority

You don't need personal equipoise to support, participate in or design a trial INSTITUTIONAL DISCREPANCY TO ESTABLISH CLINICAL EQUIPOISE

Treatment of Empyema <u>FIBRINOLYSIS</u>

Had been shown to be superior to chest tube alone

<u>VATS</u>

 Had been shown to be superior to chest tube alone

We were a house divided

VATS v Fibrinolysis for Empyema

Convinced fibrinolysis is effective

Convinced thoracoscopy is better

How can we conduct a study?

- **There are no comparative data**
- Our assumptions require proof
- A fixed management protocol

If patients are going down 2 pathways regardless, we have an ethical obligation to perform a trial

STUDY POPULATION Inclusion Criteria

VATS v Fibrinolysis for Empyema <u>FIBRINOLYSIS</u>

- 12 Fr tube placed by IR or surgery in procedure room
- 4mg tPA in 40ml NS given into tube on insertion and each day for 3 doses

<u>VATS</u>

■ Thoracoscopic debridement with chest tube left behind on -20 cm H_20 suction

London Prospective Trial - 60 pts <u>VATS v Fibrinolysis w/Urokinase</u>

■ No difference in LOS (6 v 6 days)

□ VATS more expensive (11.3K v 9.1K)

16% failure rate for fibrinolysis

CMH STUDY RESULTS

Outcomes – 36 pts

	VATS	tPA	P Value
LOS (Days)	6.9	6.8	0.96
O2 tx (Days)	2.2	2.3	0.89
PO Fever (Days)	3.1	3.8	0.46
Analgesic doses	22.3	21.4	0.90
Proc Charges	\$11,660	\$7,575	<u>0.01</u>

16.6% failure rate for fibrinolysis

VATS v Fibrinolysis

Summary

- No recovery advantages to VATS
- **G** Fibrinolysis is less costly
 - Avoids an operation in the majority

ALL PATIENTS

EMPYEMA

(Loculations or > 10,000 WBC/µL) 12 Fr chest tube with 3 doses of tPA **Drainage decreased without clinical improvement Ultrasound or CT** Persistent pleural space disease No pleural space disease **Continue Antibiotics** VATS

VATS v Fibrinolysis for Empyema

AFTER THE TRIAL

102 consecutive patients same protocol

Duration of stay

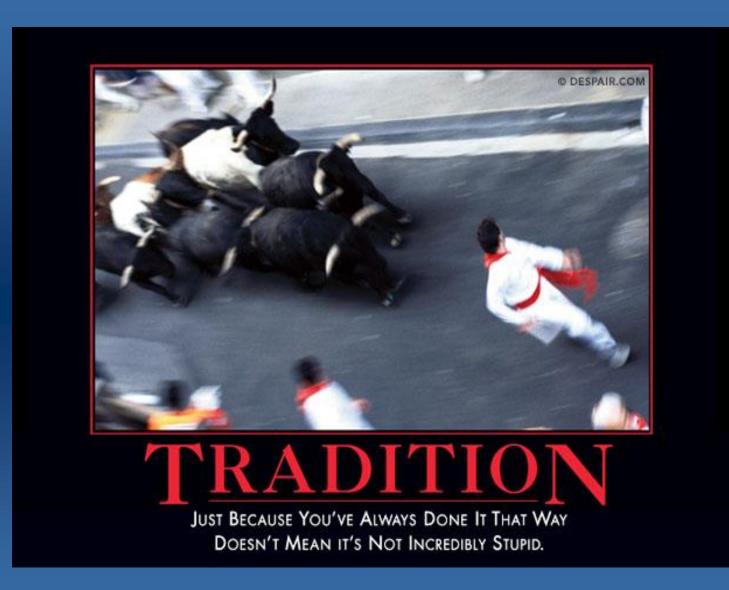
- All Patients: 7 +/- 3 days
 - Fibrinolysis only: 6.3 +/- 2.0 days
- Fibrinolysis then VATS: 11.8 +/- 4.3 days
 - Mean stay 5.9 +/- 3.7 days after VATS

Avg VATS operative time

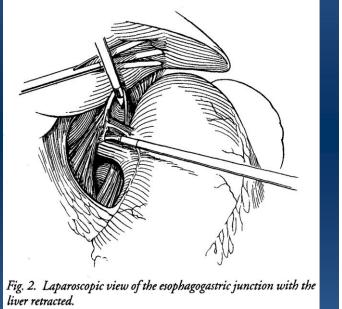
- 62 +/- 13 minutes

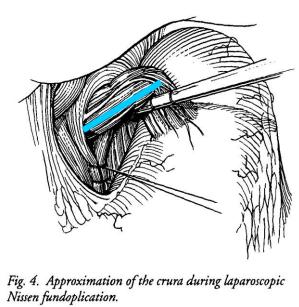
15.7% failure rate for fibrinolysis

After the Observational Study <u>Redefining Failure</u>

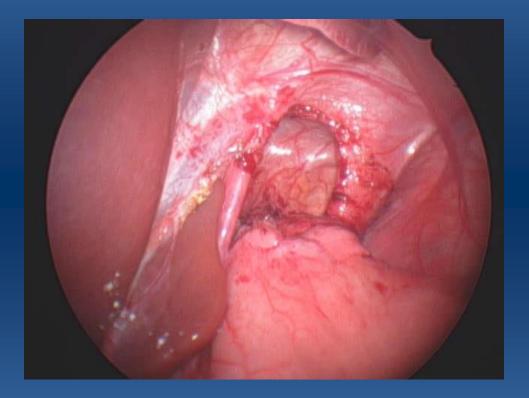

Sept, 2014 – March, 2019
48 patients
All Patients –LOS: 6 days (IQR 5, 7.2)

Only 2 patients underwent VATS (4%)Both in the first 2 years of the study period


4% failure rate for fibrinolysis

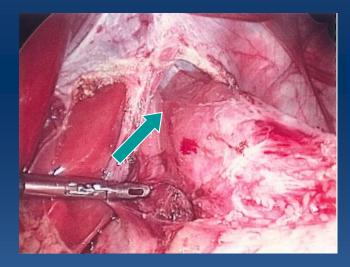

ENEMY OF PRACTICE EVOLUTION

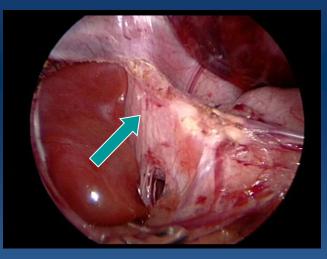
SURGICAL DOGMA



SURGICAL DOGMA

BACKGROUND

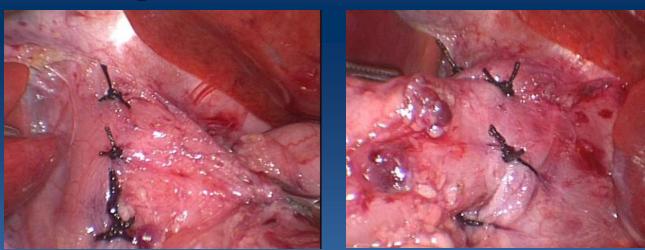

We had begun doing less dissection and placing more stitches and were seeing less herniations – Whit Holcomb


 The UAB group was bipolar on the topic -Keith Georgeson v Mac Harmon

INTERVENTIONS

Maximal Mobilization (MAX)

Minimal Mobilization (MIN)



INTERVENTIONS

At Least 4 Esophagocrural Sutures Placed in All Patients

Right Crus

Left Crus

Dissection vs No Dissection

Study Design

- **Primary Outcome Variable Hiatal Hernia**
 - 2 centers CMH and UAB
 - All patients get upper GI study at 1 yr

QUALITY ASSURANCE

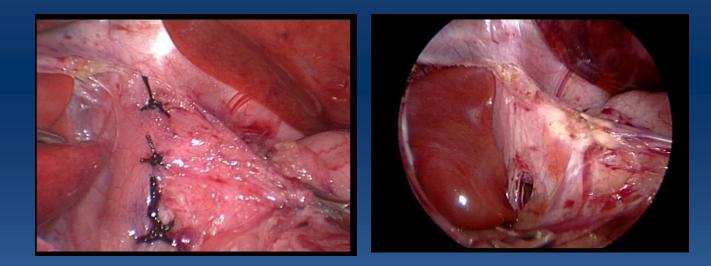
- Photograph after dissection to confirm minimal or maximal mobilization
- Photographs were reviewed by participating surgeons at APSA when we reviewed the data
- No patients were removed because photograph didn't confirm randomization allotment

OUTCOMES <u>During Study Follow-Up</u> (16 Months – 3.5 Years)

	MAX (N = 70)	MIN (N = 64)	P Value
Wrap Herniation	30.0%	7.8%	0.002
Re-Operation	18.4%	3.3%	0.006

LONG-TERM FOLLOW-UP

122 patients in original study at CMH
67% telephone contact (43 MAX, 39 MIN)
11.5% deceased (4MAX, 10MIN)
21.3% lost to follow-up (14 MAX, 12 MIN)


□ Median time to follow-up: 6.5yrs

 \Box Mean age: 8.4 \pm 2.8yrs

RATE OF POST-OPERATIVE HERNIATION AT 1 AND 5 YRS

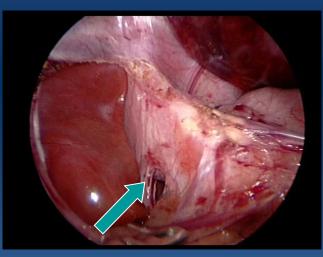
	1 yr	5 yr
MAX	12%	37%
MIN	3%	12%
	P=0.01	P=0.01

NISSEN FUNDOPLICATION STUDY #2 Crural Stitches vs No Stitches

Stitches vs No Stitches

Randomized 120 patients

■ No herniations in either group


I reoperation for failed fundo in stitch group

□ Far shorter operating time with no stitches

"It was the dissection causing the problem"

Prosp Observational Study

No Crural Stitches

GROUP PRACTICE = CLINICAL EQUIPOISE

PERFORATED APPENDICITIS

Should we irrigate?

IRRIGATION

"Dilution is the solution to pollution"

NO IRRIGATION

"Macrophages can't swim"

STUDY POPULATION

Inclusion Criteria

Under 18 years of age
 Perforated appendicitis at the time of appendectomy

 Stool in the abdomen
 Hole in the appendix

 Exclusion Criteria

• Severe concomitant process

INTERVENTIONS Irrigation

□ 1 bag of saline attached to the suction/irrigator

• Minimum irrigation volume of 500cc

Suction Only

□ No bag attached to the suction/irrigator

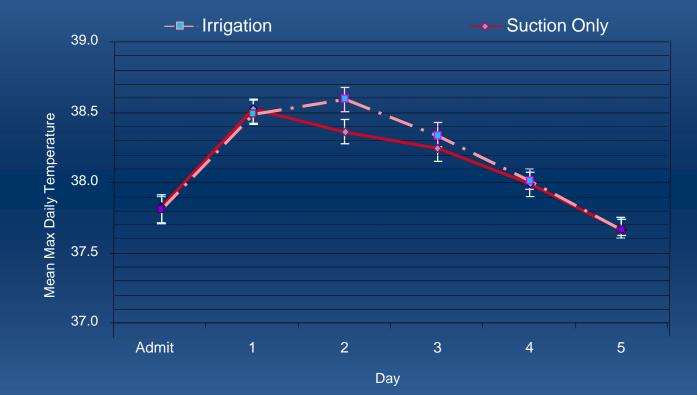
Battery Powered Suction Irrigator Used in All Cases

STANDARDIZED SUCTION

Battery Powered Suction Irrigator

MANAGEMENT

- One computer order set for both groups
- Standard PCA was utilized for pain control
- □ Foley catheter placed, no nasogastric tubes
- Once daily dosing of IV ceftriaxone (50 mg/kg) and metronidazole (30 mg/kg)
- When tolerating diet, discharged home to complete 7 day course with oral amoxicillin/clavulanate



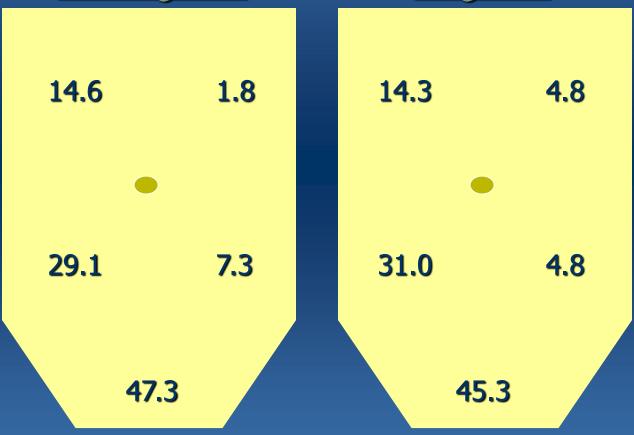
- □ 1 suction patient received irrigation
 - Analyzed with the no irrigation patients
- Mean volume of irrigation was 867 +/- 327 ml
 - □ Range 500 2000 ml

And the results are.....

RESULTS				
<u>Outcomes</u>				
	No Irrigation (n = 110)	Irrigation (n = 110)	P Value	
Abscess (%)	19.1%	18.3%	1.0	
Op Time (mins)	38.7 +/- 14.9	42.8 +/- 16.7	0.06	
Initial PO's (dys)	2.6 +/- 1.5	2.5 +/- 1.3	0.70	
Reg Diet (hrs)	3.4 +/- 1.7	3.5 +/- 1.5	0.63	
Narcotic Doses	11.4 +/- 5.4	11.6 +/- 6.3	0.76	
Days of Stay	5.5 +/- 3.0	5.4 +/- 2.7	0.93	
Charges (\$K)	48.1 +/- 20.1	48.1 +/- 18.2	0.97	

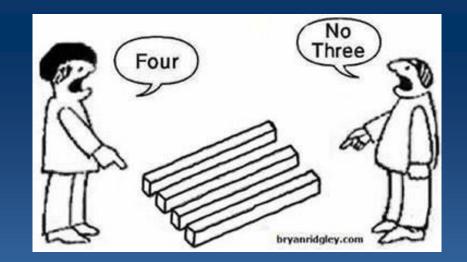
TEMPERATURES

RESULTS

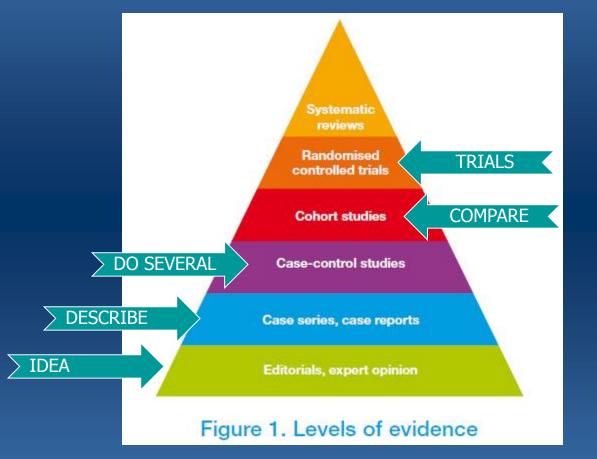

Outcomes of Patients with Postoperative

Abscess			
	No Irrigation (n = 21)	Irrigation (n = 20)	P Value
Drain Placed (%)	52%	40%	0.54
Days of Drainage	2.3 +/- 2.2	1.8 +/- 2.8	0.58
Days of Stay	8.7 +/- 4.4	9.4 +/- 3.8	0.56
Reg Diet (hrs)	19.5 +/- 3.9	21.4 +/- 8.6	0.37
Days Home Health	10.4 +/- 4.5	13.0 +/- 7.4	0.20
Charges (\$K)	28.3 +/- 22.7	24.6 +/- 13.8	0.54

LOCATION OF ABSCESSES


Irrigation

No Irrigation

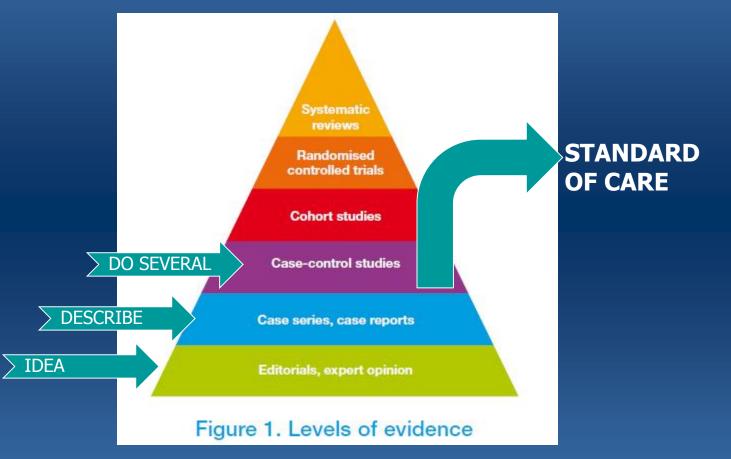

CONCLUSION

Irrigation = Suction Alone

HOW CAN WE INVESTIGATE DURING INNOVATION?

PROGRESSION OF INNOVATION

Acceptance of Laparoscopy


 Cholecystectomy, splenectomy, nephrectomy, adrenalectomy, fundoplication, others

□ Same operation - no laparotomy

 Shorter LOS, shorter convalescence, improved patient satisfaction, improved cosmesis, improved visualization/ease of operation

Disruptive Innovation

WHAT'S THE PROBLEM?

Subconscious Maleficence

Subconscious Maleficence

Extra-intracranial artery bypass for stroke

 Over 1000 cases by 1978
 RCT in 1985 – then gone

 Arthroscopic debridement for osteoarthritis

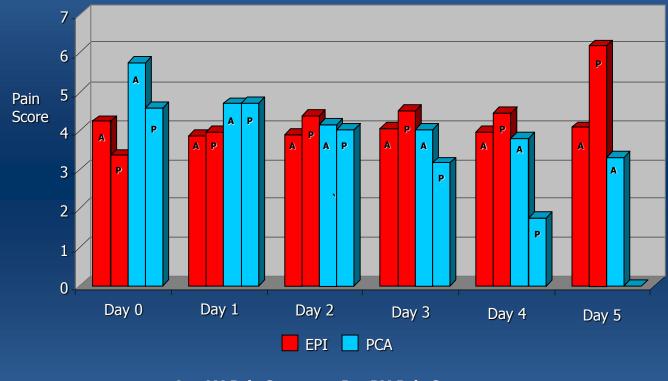
 Case series and cohort comparisons led to 650,000/yr in US by 1996
 Trial in 2002 – no benefit over placebo

Subconscious Maleficence

Colectomies for epilepsy
Anglechik ring for GERD
Reimplants for low grade VUR
Nephrectomy/splenectomy trauma
Jejunoileal bypass for obesity
Swan Ganz catheters

How Do We Prevent Becoming Tomorrow's Example?

Investigate with the launch of new treatments

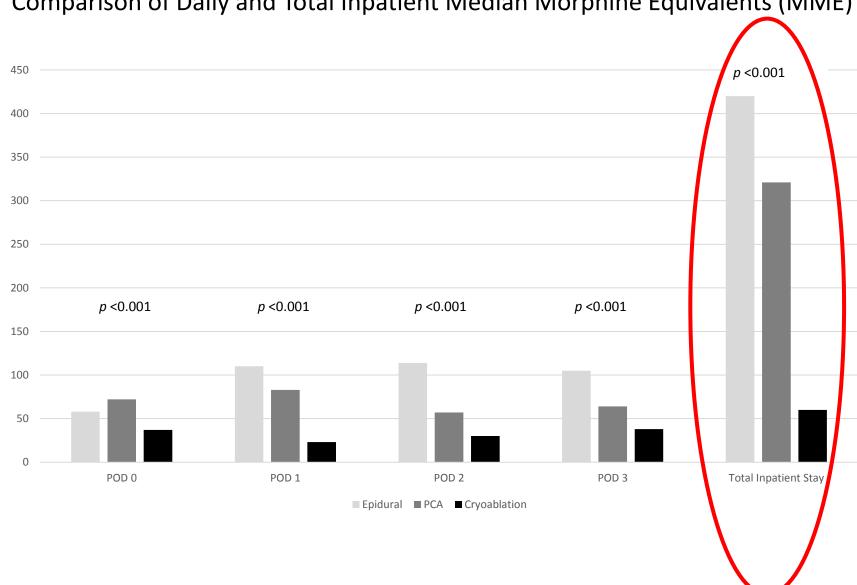

-Prosp observational if the leap is disruptive

- Comparative study if equipoise exists

PECTUS EXCAVATUM

Epidural v PCA RCT

CRYOABLATION



CRYOABLATION

EPI v PCA v Cryo

	Epidural (n=32)	PCA (n=33)	Cryoablation (n=35)	<i>p</i> -value
Gender, Male (%)	90.6	93.9	82.4	0.2
Age (yr)	15 [14, 16]	14 [13,16]	16 [14, 17]	0.02*
Height (m)	1.8 [1.7, 1.8]	1.7 [1.7, 1.8]	1.7 [1.7, 1.8]	0.46
Weight (kg)	56.6 [52, 61.6]	56.1 [48, 58.4]	57.1 [50, 64]	0.24
Correction Index (%)	30 [37, 30]	30 [30, 40]	35 [30, 47]	0.01*
Time to only oral pain meds (hr)	71.1 [50.4, 82.7]	66.6 [50, 70]	20.9 [11.6, 28.4]	<0.01*
Length of stay (d)	4.3 [4.1, 5.1]	4.2 [3.4, 5.2]	1 [1, 1.3]	<0.01*

Comparison of Daily and Total Inpatient Median Morphine Equivalents (MME)

tPA in Abdominal Abscesses Associated with Appendicitis

> New Therapy (tPA) Compare to Standard IRB said "do more" New becomes Standard

RESULTS Drainage Outcomes

	Saline $(n = 32)$	tPA (n = 30)	P Value
Post Drain LOS	3.3 +/- 1.3	4.5 +/- 1.6	0.002
Total Days of Stay	6.4 +/- 4.0	7.1 +/- 3.8	0.49
Days of Drain	3.5 +/- 3.6	4.6 +/- 2.4	0.17
Drain Total (ml)	128 +/- 160	204 +/- 166	0.06

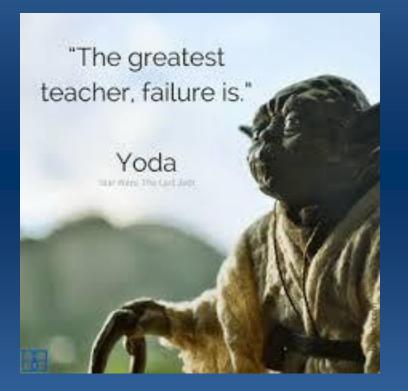
RESULTS

Downstream Outcomes

	$\frac{\text{Saline}}{(n=32)}$	tPA (n = 30)	P Value
Healthcare visits	5.2 +/- 2.3	5.9 +/- 2.3	0.24
Day of IV abx	15.6 +/- 4.0	16.8 +/- 5.0	0.30
Recurrent abscess	2 (6%)	6 (20%)	0.22
Med Charges (\$K)	4.1 +/- 2.6	6.5 +/- 3.1	0.002

tPA in Abdominal Abscesses Associated with Appendicitis

> New Therapy (tPA) ↓ Compare to Standard ↓ Worse outcome with more expense ↓ Standard Remains


Center for Prospective Trials

□ Initiated in 2006 Randomized Trials ■ 18 Published □ 2 Completed 2 Enrolling Prospective Observational Studies **6** Published □ 2 Completed □ 6 Enrolling

Lesson Learned

Lessons Learned

Lessons Learned

"Don't be too timid about your actions, all life is an experiment. The more experiments you make the better"

Ralph Waldo Emerson

As long as you are collecting the data