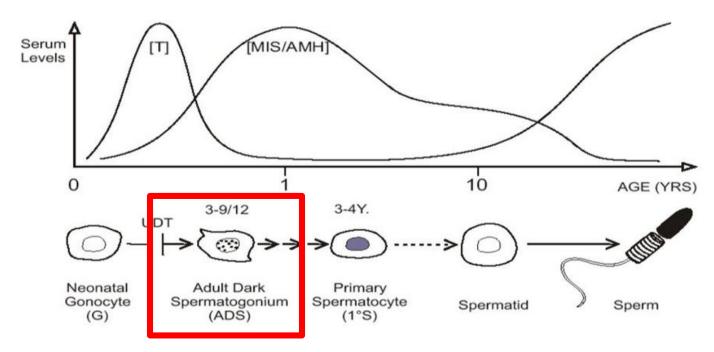
Fertility in 2020: Undescended Testis

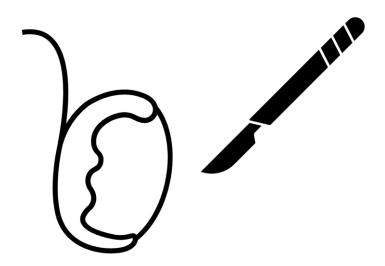
Kate H. Kraft, MD, FAAP, FACS September 28, 2019

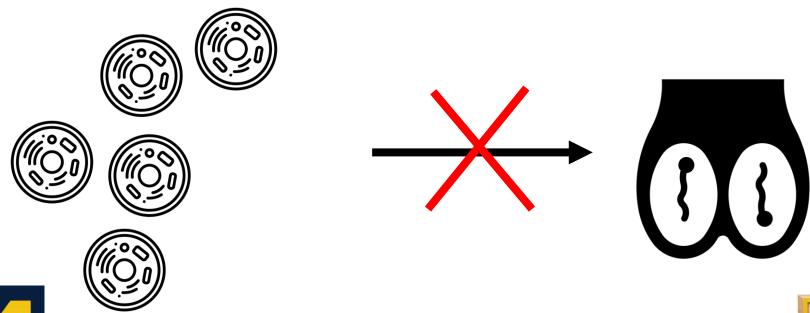
Overview


- AUA Guidelines
- Semen analysis and paternity data
- Hormonal therapy
- Cryopreservation and other future directions

Undescended Testis

- 1-3% full-term male neonates
- ~30% preterm male neonates
- Histopathology Ad spermatogonia counts


- Diagnose at 6 months
- Orchiopexy within the next year


- Orchiopexy within first 18 months → preserve fertility
- 25% cryptorchid boys born with reduced GCs
- After 15-18 mos, some lack GCs
 - No GCs on biopsy increases to ~40% in BUDT at 8-11 years

- # GCs remains low, does not increase with age
- Testes that remain undescended → loss of GCs and Leydig cells
- After 2 years → thermal effects

226 boys (6 mos – 16 years)

Age-matched comparisons - normal testes

42
BUDT

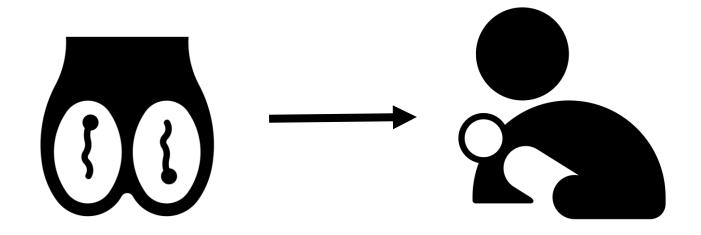
- No significant difference in fertility index of patients <1 year old
- Fertility index differences statistically significant in all other age groups

Systematic review

Systematic review and meta-analysis comparing outcomes following orchidopexy for cryptorchidism before or after 1 year of age

B. S. R. Allin^{1,3}, E. Dumann², D. Fawkner-Corbett³, C. Kwok³, C. Skerritt⁴, on behalf of the Paediatric Surgery Trainees Research Network

 Systematic reviews/meta-analyses support orchiopexy at 6-12 months for improved fertility



Paternity

- BUDT <<<< UUDT
 - Controls 94%
 - BUDT 62%
 - UUDT 89.5%

Time to pregnancy:

BUDT → 33.9 mos UUDT/controls → 11.1 mos

Lee PA, et al. Pediatrics 1996; 98: 676. Lee PA and Coughlin MT. J Urol 2002; 168: 1680. Lee PA et al. J Urol 2000; 164: 1697.

Semen Analysis

- 91 UUDT, 19 BUDT
- Bilateral testis biopsy in childhood → TGC/T and Ad/T
- SA parameters and hormonal evaluation in adulthood
- Total GC count at orchiopexy is not associated with significant changes in hormones or semen analysis in adulthood (UUDT or BUDT)

Semen Analysis

- In <u>UUDT</u>, low Ad count is associated with lower sperm count and sperm density, but even the lower sperm counts are above WHO standard
- In <u>BUDT</u>, low Ad count at orchiopexy is associated with abnormal FSH and SA results in adulthood
- Testis biopsy at orchidopexy may have limited use in UUDT and may be more clinically useful BUDT

Providers should counsel boys with a history of cryptorchidism and/or monorchidism and their parents regarding potential long-term risks and provide education on **infertility** and cancer risk. (Clinical Principle)

Assisted Reproductive Technology

0022-5347/03/1704-1287/0
THE JOURNAL OF UROLOGY[®]
Copyright © 2003 by American Urological Association

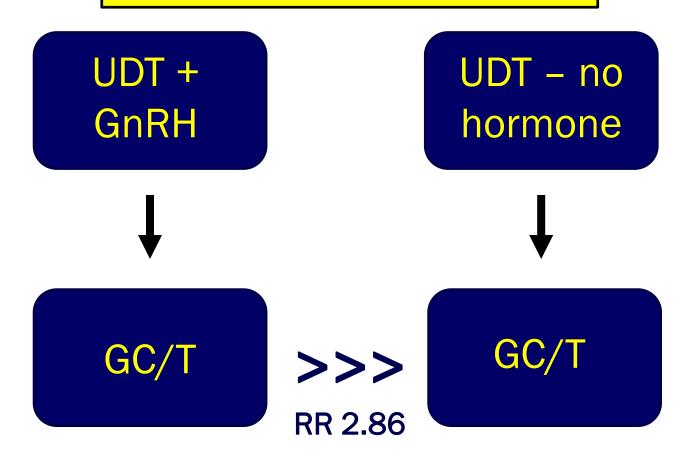
Vol. 170, 1287–1290, October 2003

Printed in U.S.A.

DOI: 10.1097/01.ju.0000080707.75753.ec

TESTICULAR SPERM EXTRACTION WITH INTRACYTOPLASMIC SPERM INJECTION IS SUCCESSFUL FOR THE TREATMENT OF NONOBSTRUCTIVE AZOOSPERMIA ASSOCIATED WITH CRYPTORCHIDISM

JAY D. RAMAN AND PETER N. SCHLEGEL*


From the James Buchanan Brady Urology Foundation, Department of Urology, Center for Male Reproductive Medicine and Microsurgery, New York Presbyterian Hospital, Weill Medical College of Cornell University (JDR, PNS) and The Population Council, Center for Biomedical Research (PNS), New York, New York

Hormonal Therapy after Orchiopexy

Meta-analysis: 10 studies

Hormonal Therapy after Orchiopexy

Selecting Infants With
Cryptorchidism and High Risk of
Infertility for Optional Adjuvant
Hormonal Therapy and
Cryopreservation of Germ Cells:
Experience From a Pilot Study

ORIGINAL RESEARCH

published: 05 June 2018 doi: 10.3389/fendo.2018.00299

Jorgen Thorup^{1,2*}, Erik Clasen-Linde³, Lihua Dong⁴, Simone Hildorf¹, Stine Gry Kristensen⁴, Claus Yding Andersen^{2,4} and Dina Cortes^{2,5*}

- 17 boys with BUDT (7 mos 3 ½ years)
- Normal FSH, decreased GC/T
- 5 had adjuvant LHRH, compared to controls
- 12 mos after o'pexy → repeat biopsy and cryopreservation

Hormonal Therapy after Orchiopexy

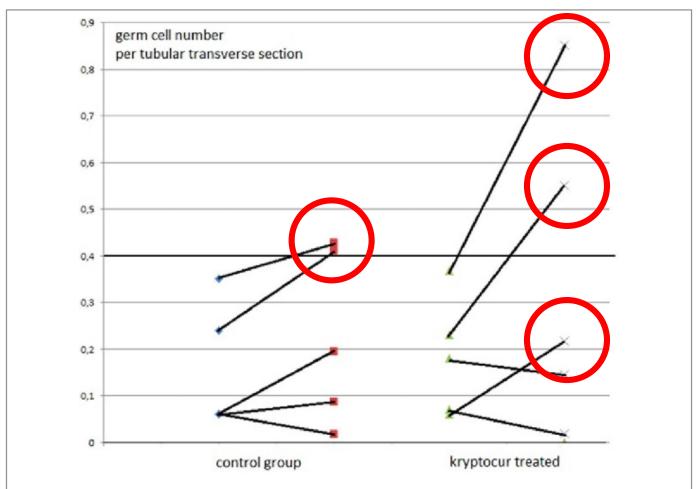
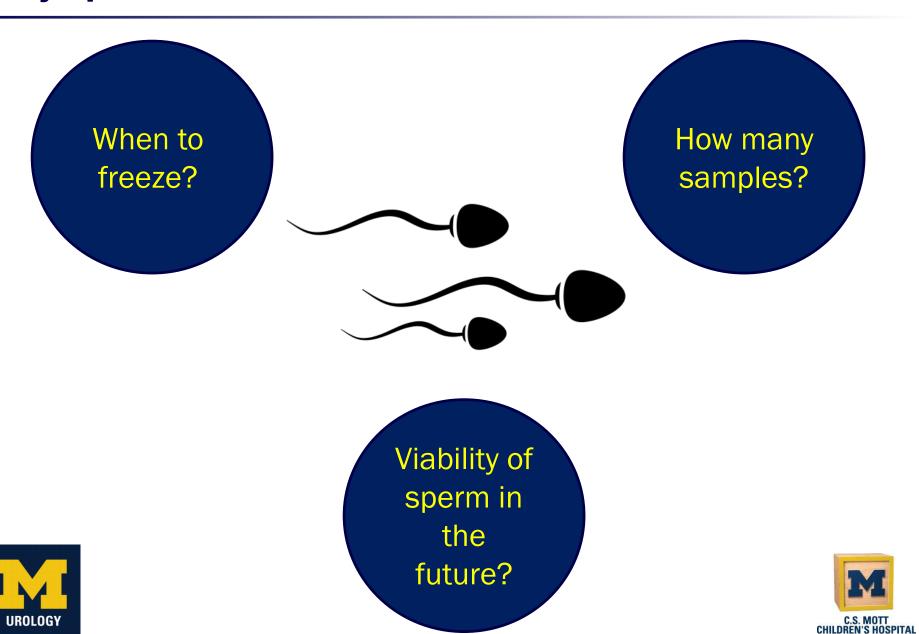



FIGURE 1 | The average number of germ cells per tubular transverse section from 10 boys with bilateral cryptorchidism at time of orchiopexy and 1 year after, at time of cryopreservation. The individual results of primary and follow-up biopsies from five kryptorcur® treated and five bilateral controls without hormonal treatment aged 10 months to 3 years are connected with lines [there was no age difference between groups (p = 0.92)].

SSC Transplantation

Proc. Natl. Acad. Sci. USA Vol. 91, pp. 11303-11307, November 1994 Developmental Biology

Germline transmission of donor haplotype following spermatogonial transplantation

(testis/stem cells/spermatogenesis/transgenic mice/fertility)

RALPH L. Brinster* and Mary R. Avarbock

Laboratory of Reproductive Physiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104

Contributed by Ralph L. Brinster, August 18, 1994

M. Hutka et al. Differentiation 97 (2017) 44–53

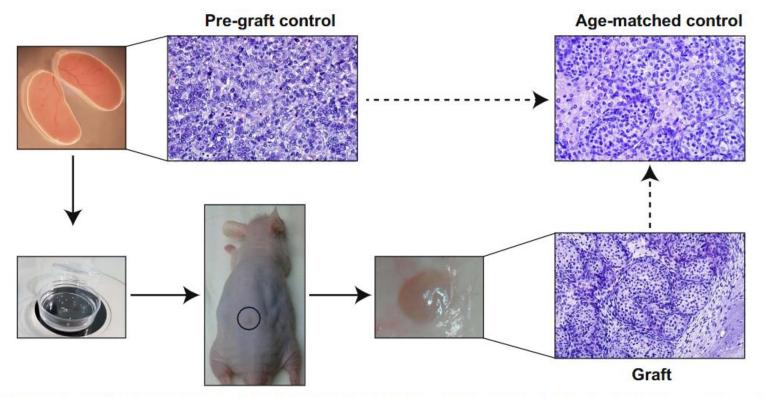
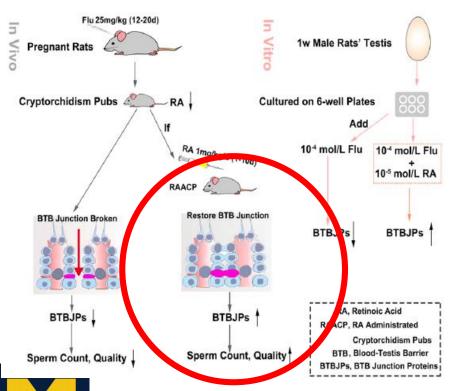


Fig. 1. Human fetal testis (HFT) transplantation as a model of testicular development. First trimester HFT (obtained from elective terminations) are cut into small pieces. A few fragments are fixed as reference histological samples (pre-graft control) to evaluate graft development at baseline (note: no seminiferous cord formation) and the remainder transplanted under the back skin of castrated immunodeficient mice. HFT grafts increase in volume and undergo subsequent development, including seminiferous cord formation

Current State	Gaps in Knowledge	Future Work
UDT pts at risk for infertility	 Impact of pre-existing pathology 	 Increased access to clinical research programs
 Feasible procedure 	 Availability of testicular 	
	cryopreservation program	 Determine optimal
 Complications rare 		transport and storage
	 Long-term impact on 	conditions for prepubertal
 Limited studies using prepubertal tissues 	testis function	tissues
	 Lack of studies using prepubertal tissues 	 Long-term follow up of patients including fertility outcomes

Current State	Gaps in Knowledge	Future Work
 UDT pts at risk for infertility 	 Impact of pre-existing pathology 	 Increased access to clinical research programs
Feasible procedure	 Availability of testicular cryopreservation program 	 Determine optimal
Complications rare	 Long-term impact on 	transport and storage conditions for prepubertal
 Limited studies using prepubertal tissues 	testis function	tissues
	Lack of studies using prepubertal tissues	 Long-term follow up of patients including fertility outcomes

Current State	Gaps in Knowledge	Future Work
 UDT pts at risk for infertility 	 Impact of pre-existing pathology 	 Increased access to clinical research programs
 Feasible procedure 	 Availability of testicular 	
	cryopreservation program	Determine optimal
 Complications rare 	• Langtarm impact on	transport and storage
 Limited studies using prepubertal tissues 	 Long-term impact on testis function 	conditions for prepubertal tissues
	 Lack of studies using prepubertal tissues 	 Long-term follow up of patients including fertility outcomes


Current State	Gaps in Knowledge	Future Work
UDT pts at risk for infertility	 Impact of pre-existing pathology 	 Increased access to clinical research programs
 Feasible procedure 	Availability of testicular	
Complications rare	cryopreservation programLong-term impact on	 Determine optimal transport and storage conditions for prepubertal
 Limited studies using prepubertal tissues 	testis function	tissues
	Lack of studies using prepubertal tissues	 Long-term follow up of patients including fertility outcomes

Retinoic acid: A potential therapeutic agent for cryptorchidism infertility based on investigation of flutamide-induced cryptorchid rats *in vivo* and *in vitro*

Zhou Yu^{a,b,d}, Zhang Deying^{a,b,c,d,*}, Hu Dong^{a,b}, Liu Bo^{a,b,d}, Peng Jinpu^e, Shen Lianju^{a,b,c}, Long Chunlan^{a,b,c}, Yu Yihang^{a,b}, Zhang Yuanyuan^f, Liu Xing^{a,b,c,d}, Tao Xu^g, Timashev Peter^h, Lin Tao^{a,b,c,d}, He Dawei^{a,b,c,d}, Wei Guanghui^{a,b,c,d,*}

- RA concentration lower in cryptorchid rat pups
- Histology approached normal in cryptorchid rats receiving RA

Summary

- Orchiopexy within first 18 months → preserve fertility
- Testes that remain undescended

 loss of GCs and Leydig cells
- SA and paternity data are more favorable for UUDT but suggest reduced fertility in BUDT
- ART may need to be considered
- Role for cryopreservation in the future?
- Other therapies (e.g. hormonal tx, retinoic acid) need further investigation

